Aubry-mather Theory for Multi-dimensional Maps

نویسنده

  • DIOGO A. GOMES
چکیده

In this paper we study a discrete multi-dimensional version of Aubry-Mather theory. We set this problem as an infinite dimensional linear programming problem and study its relations to Monge-Kantorowich optimal transport. The dual problem turns out to be a discrete analog of the Hamilton-Jacobi equations. As in optimal transport, Monge-Ampére equations also play a role in this problem. We present some applications to discretizations of Lagrangian systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity for conservative twist maps of the 2-dimensional annulus

These are notes for a minicourse given at Regional Norte UdelaR in Salto, Uruguay for the conference CIMPA Research School Hamiltonian and Lagrangian Dynamics. We will present Birkhoff and Aubry-Mather theory for the conservative twist maps of the 2-dimensional annulus and focus on what happens close to the Aubry-Mather sets: definition of the Green bundles, link between hyperbolicity and shape...

متن کامل

Viscosity Solution Methods and the Discrete Aubry-mather Problem

In this paper we study a discrete multi-dimensional version of AubryMather theory using mostly tools from the theory of viscosity solutions. We set this problem as an infinite dimensional linear programming problem. The dual problem turns out to be a discrete analog of the Hamilton-Jacobi equations. We present some applications to discretizations of Lagrangian systems.

متن کامل

un 2 00 5 Symplectic aspects of Aubry - Mather theory 1

On montre que les ensembles d'Aubry et de Mañé introduits par Mather en dynamique Lagrangienne sont des invariants symplectiques. On introduit pour ceci une barriere dans l'espace des phases. Ceci est aussi l'occasion d'´ ebaucher une théorie d'Aubry-Mather pour des Hamiltoniens non convexes. Abstract : We prove that the Aubry and Mañé sets introduced by Mather in Lagrangian dynamics are symple...

متن کامل

Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation

The goal of this lecture is to explain to the general mathematical audience the connection that was discovered in the last 20 or so years between the Aubry-Mather theory of Lagrangian systems, due independently to Aubry and Mather in low dimension, and to Mather in higher dimension, and the theory of viscosity solutions of the Hamilton-Jacobi equation, due to Crandall and Lions, and more precis...

متن کامل

A Rigorous Partial Justification of Greene ' Scriterion 1

We prove several theorems that lend support for Greene's criterion for existence or not of invariant circles in twist maps. In particular, we show that some of the implications of the criterion are correct when the Aubry-Mather sets are smooth invariant circles or uniformly hyperbolic. We also suggest a simple modiication that can work in the case that the Aubry-Mather sets have non-zero Lyapun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002